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Abstract: In this paper, we generalize to the “log regular case” a result of de Jong and
Oort which states that any morphism (satisfying certain conditions) from the complement
of a divisor with normal crossings in a regular scheme to a moduli stack of stable curves
extends over the entire regular scheme. The proof uses the theory of “regular log schemes
” – i.e., schemes with singularities like those of toric varieties – due to K. Kato ([9]).
We then use this extension theorem to prove that (under certain natural conditions) any
scheme which is a successive fibration of smooth hyperbolic curves may be compactified to
a successive fibration of stable curves.
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§0. Introduction

In [9], K. Kato introduced the notion of a pair (X,DX) with toric singularities.
Roughly speaking, such a pair consists of a normal scheme X and a divisor DX ⊆ X
in that scheme whose singularities are modeled on the same sort of combinatorial data
as that classically used to describe toric varieties (as in [17]). Unlike the case of toric
varieties, however, where there is a base field, the notion of toric singularities as in [9] is
absolute, and hence does not require one to work over any specific base. Moreover, Kato
associates to such a pair (X,DX) a log scheme (X,MX) (as in [8]). Pairs (X,DX) with
toric singularities correspond to log schemes (X,MX) which are log regular. Thus, in par-
ticular, toric varieties over a field define (log) regular log schemes – in fact, the theory of
regular log schemes which are varieties over a field is essentially equivalent to the theory of
varieties with toroidal singularities (i.e., varieties that are étale locally isomorphic to toric
varieties) over that field. Alternatively, one may think of log regular (X,MX) as a sort of
natural “logarithmic generalization” of the classical notion of a pair (X,DX) where X is
regular and DX is a divisor with normal crossings.

In [7], it is shown that:

If X is regular, and DX is a divisor with normal crossings in X, then
any morphism from UX

def= X − DX to a moduli stack Mg,r of pointed
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stable curves (cf. [3], [10]) that extends to the generic points of DX

and maps UX into the open substack Mg,r ⊆ Mg,r of smooth curves
necessarily extends to a morphism X → Mg,r.

In the present paper, we generalize this result of de Jong-Oort to the case of pair (X,UX)
with arbitrary toric singularities:

Theorem A. (Extension Theorem) Let (X,M) be a regular log scheme. Let UX ⊆ X
be the interior of X, i.e., the open subscheme where the log structure M is trivial. Write
M def= Mg,r, M def= Mg,r. Let Mc

be the coarse moduli space associated to Mg,r. Suppose
that we are given a morphism

hUX
: UX → M

which satisfies hUX
(UX) ⊆ M. Let us denote by hc

UX
: UX → Mc

the composite of hUX

with M → Mc
. Then:

(1) If hUX
extends over the generic points of DX , then: (i) hc

UX
extends

to X; (ii) there exists a surjective, quasi-finite, log étale morphism
(Y,N) → (X,M) (where (Y,N) is log regular) such that hUX

extends
over Y .

(2) If hUX
extends over all points of X of height ≤ 2, and X is a local

complete intersection, then hUX
extends to X.

(3) If for some l ≥ 3 which is invertible on X, hUX
admits a level l structure

(cf. Definition 5.6), then hUX
extends to X.

Theorem A is given as Theorem 6.1 in the text. It generalizes Theorem 5.1 of [7], but
we use this result of [7] in the proof of Theorem A (so we do not obtain a new proof
of the main result of [7]). Indeed, the proof of Theorem A runs as follows: If (X,M) is
log regular, then (étale locally on X) one may blow-up (X,M) to obtain a log regular
(Y,N) such that Y is regular and the divisor DY where the log structure N is nontrivial
is a divisor with normal crossings. Then one would like to apply the main result of [7] to
(Y,N). Unfortunately, this cannot be done immediately because when one restricts the
original morphism hUX

: UX → M to UY , the resulting morphism hUY
: UY → M no

longer satisfies the same hypotheses as hUX
at the generic points of the divisor DY .

In order to get around this technical difficulty, it is necessary to make use of the log
purity theorem:
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Theorem B. (Log Purity Theorem) Let (X,M) be a regular log scheme. Let
UY → UX be a finite étale covering of the interior UX of X which is tamely ramified over
the generic points of DX → X. Let Y be the normalization of X in UY . Then the pair
(Y,UY ) is toric (cf. Definition 1.2), hence defines a regular log scheme (Y,N). Moreover,
UY → UX extends uniquely to a log étale morphism (Y,N) → (X,M).

This result is given as Theorem 3.3 in the text. It is the “log regular analogue” of the
classical purity theorem which states that if X is a regular scheme, and U ⊆ X is an open
subscheme such that the codimension in X of X −U is ≥ 2, then any finite étale covering
of U extends (uniquely) to a finite étale covering of X. It was proven originally by K. Kato
([5]). Since, however, Kato’s proof is not widely available in written form, and, moreover,
this log purity result plays an essential role in the proof of Theorem A, we decided to
give an independent treatment of Theorem B in the present paper. In fact, the author
discovered Theorem B (independently of the work of Kato) in the course of trying to prove
Theorem A, and only afterwards (as a result of communication with K. Fujiwara) did the
author learn of the existence of Kato’s proof. In fact, the proof of the present paper differs
somewhat from that of [5].

The proof of Theorem B that we give here runs as follows: We would like to reduce
to the regular case, where one has the classical purity theorem. To do this, we blow
up (X,M) to form some (X ′,M ′) for which X ′ is regular. Moreover, we show that the
“relative π1” of the blow-up morphism X ′ → X is trivial, so no information concerning
coverings is lost by pulling back to X ′. This triviality of the relative π1 is essentially an
exercise in the combinatorics of toric varieties (Theorem 2.1). Now we would like to apply
the classical purity theorem to the pull-back of the given covering to X ′. The problem (cf.
the above discussion) is that since X ′ has new divisors, i.e., divisors that map to primes
of codimension ≥ 2 in X, it is no longer clear that the pulled-back covering over X ′ still
satisfies the hypotheses of Theorem B, i.e., we do not know that the new covering is tamely
ramified over the new divisors. To get around this problem, we construct (Proposition 2.2),
for each new divisor p′ of X ′, an intermediate blow-up X ′′ → X such that X ′ → X factors
through X ′′ in a neighborhood of the given new divisor p′. Moreover, the construction
is such that if p′ maps to a prime p of height h ≥ 3 in X, then it maps to a prime p′′

of height < h in X ′′. Also, the blow-up X ′′ → X has the property that its fibers are of
dimension ≤ 1. In particular, divisors of X ′′ map to primes of X of height ≤ 2. Thus, by
using induction on h and applying the induction hypothesis to the prime p′′ of X ′′, we see
that we can reduce Theorem B to the case h = 2. In dimension 2, however, every regular
log scheme is (étale locally) “isogenous” to one which arises from a divisor with normal
crossings in a regular scheme (Corollary 1.8). Thus, we reduce to the regular case, where
we can apply the classical purity theorem. This completes our summary of the proof of
Theorem B.

Returning to the proof of Theorem A, once one has the log purity theorem, one can
reduce Theorem A to the case where hUX

: UX → M admits a level l structure (for some
prime l ≥ 3 – cf. Definition 5.6). In this case, hUX

automatically extends to the generic
points of DY . Thus, applying the main result of [7] allows one to complete the proof of
Theorem A.
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Once one has Theorem A, one can use it to compactify (cf. Theorem C below)
hyperbolic polycurves, i.e., successive families of hyperbolic curves, as follows: Let S be a
scheme. A family of hyperbolic curves U → S over S is a family of smooth compact genus
g curves with precisely r points removed, for some nonnegative integers g and r such that
2g − 2 + r ≥ 1 (see Definition 4.4 for a precise definition). A hyperbolic polycurve (cf.
Definition 4.6) U → S is a morphism which factors as a composite of a finite number of
morphisms, each of which is a family of hyperbolic curves.

The moduli stack Mg,r of (“split” – cf. Definition 5.2) hyperbolic curves is a smooth
algebraic stack over Z which is not proper. To compactify it, it is necessary to introduce
the notion of a stable curve (cf. Definition 4.3; [3,10]). In this paper, we shall think of a
family of stable curves as a pair (X → S,DM ), where X → S is a proper family of curves
and DM (the “divisor of marked points”) is a divisor in X (such that X → S and D satisfy
certain properties). A stable polycurve (cf. Definition 4.5) is a pair (X → S,D) which,
roughly speaking, factors as a composite of a finite number of families of stable curves. If
(X → S,D) is a stable polycurve, then X → S is necessarily proper.

It is easy to see that if (X → S,D) is a stable polycurve, then if we let UX
def=

X − D, and US be the image of UX in S, then UX → US is a hyperbolic polycurve. Thus,
one may think of (X → S,D) as a sort of compactification of UX → US . Then the
following result (Corollary 7.4 in the text) states that under certain natural conditions,
such compactifications always exist and are functorial in UX → US :

Theorem C. (Compactification Theorem) Let (S,MS) be a regular log scheme. Let
US ⊆ S be the interior of S. Let UX → US be polyhyperbolic and saturated (cf. Definitions
4.6, 7.3). Then UX → US may be compactified to a (log) polystable (X,MX) → (S,MS)
(cf. Definition 4.5, 7.1).

Moreover, this compactification is natural in the following sense: Suppose that (S′,MS′)
is a regular log scheme, and let (X,MX) → (S,MS), and (X ′,MX′) → (S′,MS′) be log
polystable with associated hyperbolic polycurves UX → US and UX′ → US′ , respectively.
Suppose, moreover, that we are given a commutative diagram:

UX −→ US ⊆ S⏐⏐�
⏐⏐�

⏐⏐�
UX′ −→ US′ ⊆ S′

Then the square on the left “compactifies” uniquely to a commutative diagram:

(X,MX) −→ (S,MS)⏐⏐�
⏐⏐�

(X ′,MX′) −→ (S′,MS′)
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In particular, it makes sense to speak of “the” compactification of UX → US.

We remark that in an earlier version of this paper ([15]), we proved a (weaker) version
of Theorems A and C above, in the case where the toric pair (S,US) is “polyregular,” i.e.,
may be written as a composite of “locally stable morphisms” (cf. Definition 4.1) over a
pair arising from a divisor with normal crossings in a regular scheme. Although this sort
of treatment (i.e., as in [15]) of these results gives rise to theorems that are slightly weaker
than those obtained in the present paper, it has the virtue of being independent of the
theory of log schemes (cf. [8,9]), which is unfamiliar to some algebraic geometers. The
main reasons why the polyregular case is easier to treat are as follows:

(1) Polyregular singularities are local complete intersections. Moreover,
étale coverings and line bundles on dense open subsets of local complete
intersection schemes tend to extend over the whole scheme as soon as
they extend over the complement of a closed set of fairly small codi-
mension (cf. the theory of [18]). This allows one (using certain results
on the functoriality of the indeterminacy locus – cf., e.g., Lemma 5.2)
to reduce the result to the case of polyregular singularities of dimension
≤ 3.

(2) Polyregular singularities in dimension ≤ 3 can be completely classified
and are easy to understand. For instance, their singularities can be
resolved explicitly. This means that one does not have to use such
“black box-type” results as Theorem 2.1.

In §1, we review basic facts about regular log schemes. In §2, we analyze in some detail
the structure of the sort of blow-ups that occur when one resolves toric singularities. This
analysis is used to prove Theorem B (the “log purity theorem”) in §3. In §4, we introduce
various terminology concerning stable curves and successive families of stable curves. In
§5, we discuss various “well-known” results concerning the extendability of morphisms
defined on an open dense subset of a given normal scheme. In §6, we then explain how
Theorem A follows from Theorem B and the main result of [7]. Finally, in §7, we observe
that Theorem C is essentially a formal consequence of Theorem A.

Finally, I would like to thank Takeshi Tsuji for explaining to me various basic facts
concerning regular log schemes, and Kazuhiro Fujiwara for informing me of the work of
Prof. K. Kato.

§1. Generalities on Regular Log Schemes

Let (X,M) be a fine log scheme (as in [8]), whose underlying scheme X is noetherian.
Let O×

X ⊆ OX denote the subsheaf of the structure sheaf of X consisting of invertible
sections. Thus, M is a sheaf of abelian monoids in the étale topology of X, equipped
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with a morphism expM : M → OX of étale sheaves of abelian monoids, and expM maps
exp−1

M (O×
X) isomorphically onto O×

X ⊆ OX . (Note: In [8], the morphism expM is often
denoted “α.”) If P is a abelian monoid, let us denote by P gp the abelian group associated
to P . Clearly, this operation P �→ P gp of passing from abelian monoids to abelian groups
is compatible with sheafification. Thus, let us denote by Mgp the étale sheaf of abelian
groups associated to M . Note that if P is an integral monoid, then the natural map
P → P gp is injective. Since we have assumed that (X,M) is fine (hence integral), it
follows that for each x ∈ X, the stalk {M/exp−1

M (O×
X)}x (where x is the spectrum of the

separable closure of the residue field of x) is an integral monoid.

An integral abelian monoid P (written additively) is called saturated if for every
a ∈ P gp such that n · a ∈ P for some positive integer n, it follows that a ∈ P ⊆ P gp.
The log scheme (X,M) will be called saturated if, for each x ∈ X, {M/exp−1

M (O×
X)}x

is saturated. If x ∈ X, let us write Ix
def= Mx\O×

X,X/S , and let us write Ix · OX,x for
expM (Ix) · OX,x.

Let us henceforth assume that (X,M) is saturated. Then, following [9], Definition 2.1,
we make the following definition:

Definition 1.1. We shall say that (X,M) is (log) regular at x ∈ X if OX,x/Ix · OX,x

is regular, and, moreover, dim(OX,x) = dim(OX,x/Ix · OX,x) + rankZ(Mgp
x /exp−1

M (O×
X,x)).

We shall say that (X,M) is (log) regular if (X,M) is regular at every point of X.

Let us review some basic properties of log regular (X,M) (cf. [9] for more details).
If (X,M) is log regular at a point x ∈ X, and x lies in the closure of a point y ∈ X,
then (X,M) is log regular at y, as well ([9], Proposition 7.1). If (Y,N) → (X,M) is a log
smooth morphism of saturated log schemes such that X and Y are noetherian, and (X,M)
is log regular, then (Y,N) is also log regular ([9], Theorem 8.2). Suppose that (X,M) is
log regular. Then it follows that X is normal and Cohen-Macaulay ([9], Theorem 4.1). Let
U ⊆ X be the open subscheme on which the log structure M is trivial. We shall refer
to this open subscheme as the interior of X. Let D ⊆ X be the complement of U , with
the reduced induced scheme structure. (When there are several log schemes involved, we
shall write UX , DX , MX , for U , D, and M to show that they are the respective objects
associated to (X,M).) Then D is a divisor in X, and the morphism expM : M → OX

is isomorphic (cf. [9], Theorem 11.6) to the natural morphism (OX

⋂
i∗O×

U ) ↪→ OX ,
where i : U ↪→ X is the natural inclusion, and “OX

⋂
i∗O×

U ” denotes the subsheaf of OX

consisting of regular functions on X whose restriction to U is invertible. In particular,
expM is necessarily injective. If f is a section of OX that lies in the image of expM , then
we shall write logM (f) for the unique section of M that maps under expM to f . Thus, it
follows that whether or not (X,M) is regular is an intrinsic property of the pair (X,U).
In particular, it is meaningful to make the following definition:

Definition 1.2. If X is a normal scheme, and U ⊆ X is an open subscheme of X,
then we shall call (X,U) a toric pair if (X,U) arises as above from some log regular log
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structure on X. If (X,U) is a toric pair, then we shall refer to the singularities of X as
toric singularities.

In this paper, we shall say that a closed subscheme D in a regular noetherian scheme
X is a “divisor with normal crossings” if D is a divisor which, étale locally on X, is
(scheme-theoretically) defined by a product t1 · t2 · . . . · tr, where t1, . . . , tr is part of a
regular system of parameters. Thus, if D is a divisor with normal crossings in X, then
(X,U) (where U

def= X−D) forms a toric pair. In other words, one may think of the notion
of a toric pair as a sort of generalization of the notion of a divisor with normal crossings.

Now let us suppose that (X,M) is log regular and that X is strictly henselian with
unique closed point x ∈ X. Let P

def= Mx/logM (O×
X,x). Thus, P is a finitely generated,

integral, saturated monoid. Moreover, P does not contain any nonzero invertible elements,
i.e., a,−a ∈ P implies a = 0. In particular, P (and hence also P gp) is torsion-free. Thus,
P gp is a finitely generated free abelian group. Moreover, we have an exact sequence of
abelian groups

0 → logM (O×
X,x) (∼= O×

X,x) → Mgp → P gp → 0

Since P gp is free, it follows that this exact sequence always splits.

Definition 1.3. We shall refer to a splitting P gp → Mgp of the above exact sequence as
a clean chart at x.

Note that we also have an exact sequence of abelian monoids:

0 → logM (O×
X,x) → M → P → 0

Moreover, it is clear that this exact sequence may be identified with the pull-back of the
preceding exact sequence via P → P gp. Thus, a clean chart induces a splitting P → M .
Note that such a splitting P → M defines a chart (in the sense of [8]) for the log scheme
(X,M). If a clean chart has been fixed, then we shall write expM (a) (where a ∈ P gp)
for the (rational) section of OX defined by applying to a the composite of the splitting
P gp → Mgp with (the morphism induces on (−)gp’s by) expM : M → OX .

Let n be a positive integer. Then we would like to define a morphism

(Y,N) → (X,M)

of log schemes as follows: Let us write Z[P ] for the monoid ring of P over Z. Let nP :
Z[P ] → Z[P ] denote the Z-algebra morphism induced the “multiplication by n” on P . Let
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Y
def= X ×Z[P ],nP

Z[P ], and let N be the log structure associated to the chart P → OY

(where this “P” is the P in the range of the morphism nP ).

Lemma 1.4. (Y,N) is log regular. Moreover, the natural morphism Y → X is finite
over X, and flat of degree nrankZ(Pgp) over UX .

Proof. The last sentence is immediate from the definition of (Y,N). Thus, it suffices to
prove that (Y,N) is log regular. Since log regularity is stable under genericization ([9],
Proposition 7.1), it suffices to prove that (Y,N) is log regular at the unique point y ∈ Y
lying over x ∈ X. Since it follows immediately from the definitions that OY,y/Iy · OY,y =
OX,x/Ix · OX,x, we thus see that we are in a situation where we can apply Theorem 6.1
of [9]. One thus concludes as in the last paragraph of the proof of Theorem 8.2 of [9], p.
1087. ©

Definition 1.5. We shall refer to (Y,N) → (X,M) as the dilation of magnitude n
associated to the clean chart P gp → Mgp. If (Y,N) → (X,M) is a dilation, then we shall
refer to (Y,N) as a dilate of (X,M).

Now let p ∈ X be a point of X. Let us write Xp for the strict henselization of X at
p. Note that the clean chart P gp → Mgp defines a morphism P gp → Mgp → Mgp|Xp

such

that

P gp → (Mgp/(logM (O×
X)))|Xp

is surjective. In particular, there exists a finitely generated, free Z-module P gp
p ⊆ P gp such

that the restriction

P gp
p → Mgp|Xp

of P gp → Mgp|Xp
to P gp

p defines a clean chart for Xp. Since dilations of Xp with respect

to this clean chart are obtained by forming the normalization of Xp in the finite, flat
covering of Up obtained by extracting roots of elements of the image of P gp

p in OUp
, and

such elements may also be obtained as elements of the image under the natural morphism
OU → OUp

of elements of expM (P gp), it thus follows that:

Proposition 1.6. For any p ∈ X, there exists a clean chart for Xp such that any dilation
of Xp with respect to this clean chart is dominated by the restriction to Xp of a dilation
with respect to the given clean chart P gp → Mgp of X.
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Finally, before continuing, we pause to consider the structure of P in greater detail in
the case rankZ(P gp) ≤ 2.

Proposition 1.7. If rankZ(P gp) = 1, then P ∼= N def= {a ∈ Z | a ≥ 0}. If rankZ(P gp) =
2, then there exist a, b ∈ P gp

Q
def= P gp ⊗Z Q such that: (i) P ⊆ N ·a+N · b; (ii) there exists

a positive integer l such that l · a, l · b ∈ P .

Proof. The rank 1 case is trivial. For a discussion of the rank 2 case, we refer to the
discussion preceding Proposition 1.19 of §1.7 of [17]. Indeed, in the notation of loc. cit.,
if α, β ∈ P are the primitive elements denoted “n, n′” (in the third paragraph of p. 24 of
[17]), then it suffices to take a

def= α/l, b
def= β/l for some appropriate l. ©

Corollary 1.8. If rankZ(P gp) = 1, then X is regular and DX is a regular divisor
in X. If rankZ(P gp) = 2, then there exists a positive integer n such that any dilation
(Y,N) → (X,M) of magnitude divisible by n factors through some (Y ′,M ′) such that:
(i) Y ′ is regular, and DY ′ is a divisor with normal crossings in Y ′; (ii) the morphisms
Y → Y ′ and Y ′ → X are finite (over X) and flat over UX .

Proof. The rank 1 case is trivial. The rank 2 case follows from Proposition 1.7 by
letting (Y,N) → (X,M) be the dilation of magnitude l, and letting (Y ′, N ′) → (X,M)
(respectively, (Y,N) → (Y ′, N ′)) be the morphism defined by Z[P ] ↪→ Z[N · a + N · b]
(respectively, Z[N · a + N · b] ↪→ Z[1l · P ]). Note that the log regularity of (Y ′, N ′) follows
by the same argument as that used in the proof of Lemma 1.4 to prove the log regularity
of (Y,N). ©

Remark. The property discussed in Corollary 1.8, i.e., that “up to isogeny” every toric
pair is “regular” (i.e., arises from a divisor with normal crossings in a regular scheme) is
false in dimensions ≥ 3. Indeed, if it were true, then it would follow that if (X,M) is log
regular, then X is necessarily locally Q-factorial, i.e., some nonzero multiple of every Weil
divisor on X is Cartier. On the other hand, an easy calculation (involving blowing up at
the origin u = v = x = y = 0) reveals that the pair

X
def= Spec(k[[u, v, x, y]]/(uv − xy)) ⊇ U

def= X[
1
u

,
1
v
]

is toric, but not locally Q-factorial.
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§2. Blow-ups of Regular Log Schemes

We continue with the notation of §1. Thus, we assume that (X,M) is log regular and
that X is strictly henselian with unique closed point x ∈ X. In fact, in this §, we would
also like to assume that X is the spectrum of a complete local ring.

Let us recall the apparatus of “fans,” as discussed for instance in [17], p. 2. Let
r

def= rankZ(P gp). Then one may think of the finitely generated saturated monoid P as
being defined (cf. [17], Proposition 1.1, p. 3) by a strongly convex rational polyhedral
cone σP ⊆ Rr. More generally, a fan is a nonempty collection of strongly convex rational
polyhedral cones in Rr satisfying certain conditions (cf. [17], p. 2). If Δ is the fan arising
from a locally finite nonsingular subdivision of σP (cf. [17], p. 23, Corollary 1.18), then Δ
defines a proper, birational morphism

f log : (Y,N) → (X,M)

(cf. [9], §10) such that (Y,N) is log regular; Y is regular; and DY ⊆ Y is a divisor with
normal crossings in Y . It is known that such a Δ always exists (cf. [17], §1.5).

Let Z ⊆ Y be an irreducible component of (Yx)red (where Yx
def= f−1(x)). Then the

ideal defining the closed subscheme Z ⊆ Y is (Zariski) locally generated by sections of OY

of the form expN (a), for a ∈ P gp. In particular, it follows immediately that Z is regular.
Let us define the closed subscheme DZ ⊆ Z Zariski locally on Z as the restriction to Z of
all the irreducible components of DY that do not contain Z. Let UZ

def= Z − DZ . Then
I claim that Z is a toric variety whose torus embedding is UZ ⊆ Z. Indeed, this follows
immediately from the fact that, Zariski locally, Z is, by construction, the spectrum of the
monoid ring associated to some quotient of a submonoid of P gp. Thus, in particular, UZ

is isomorphic to some product of Gm’s over k
def= k(x), the residue field of x ∈ X. Let us

write Ŷ for the formal scheme obtained by completing Y along the proper k-scheme Yx.

Next, recall that there is a certain correspondence between certain portions of Δ or
σP and various subobjects of Y . For instance, each of the cones σ ∈ Δ corresponds
to affine opens Uσ ⊆ Y , Ûσ ⊆ Ŷ (cf. Propositions 1.3, 1.4 of [17], p. 7). Under this
correspondence, the cones σ ∈ Δ that do not intersect the interior Int(σP ) of σP correspond
to the Uσ ⊆ Y \Yx, while the cones σ ∈ Δ that intersect Int(σP ) correspond to the Uσ that
intersect the fiber Yx. Let σ ∈ Δ be an r-dimensional (i.e., top dimensional) cone in Δ.
Thus, since σ is nonsingular (i.e., abstractly isomorphic to Nr), it follows that Ûσ is the
completion of Y along some subscheme Wσ ⊆ (Yx)red ⊆ Y , where Wσ may be identified
with a closed, reduced subscheme of Ar

k (i.e., r-dimensional affine space over k) which is
the union of a finite number of linear subspaces (passing through the origin) of Ar

k. Note
that each of these linear subspaces is an open dense subset of some Z ⊆ Y of the sort
considered in the preceding paragraph.

We would like to consider the algebraic fundamental group π1(Ŷ ) (for some choice of
basepoint in Yx, which, for convenience, we omit in the following) of Ŷ . Since the étale site
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is invariant under nilpotent thickenings, it follows that π1(Ŷ ) = π1(Yx) = π1((Yx)red). Let
Z ⊆ (Yx)red be an irreducible component of (Yx)red. Then Z is a smooth, proper, rational
variety over k. In particular, its fundamental group π1(Z) is trivial. (Indeed, since Z is a
proper, toric variety, it lifts naturally to a toric variety in characteristic zero. Moreover,
since π1(Z) is a quotient of this toric variety in characteristic zero, it suffices to observe that
the fundamental group of any smooth, proper toric variety in characteristic zero is trivial
– but this follows, for instance, from Proposition 1.9 of [17], p. 14.) Now let Ŷ ′ → Ŷ be
an arbitrary finite étale covering. Since the restriction of this covering to any Z is trivial,
it follows that the restriction of this covering to each of the irreducible components of any
Wσ (as in the preceding paragraph) is trivial. But since all the irreducible components
of Wσ pass through the origin in Ar

k, it follows that the restriction of Ŷ ′ → Ŷ to Wσ is
trivial.

More generally, for any σ ∈ Δ such that σ
⋂

Int(σP ) �= ∅, let Wσ
def= Ûσ

⋂
(Yx)red.

Since any such σ is a face of an r-dimensional cone σ′ ∈ Δ (so Wσ ⊆ Wσ′), it follows that
the restriction of Ŷ ′ → Ŷ to any such Wσ is trivial. Thus, for any such σ, we obtain a
(trivial) finite étale covering W ′

σ → Wσ. Since these étale coverings are compatible with
respect to restriction from Wσ to Wτ (where τ is a face of σ), it follows that we may
construct a finite étale covering C → Int(σP ) as follows: For each σ ∈ Δ as above, we let
Cσ → σ

⋂
Int(σP ) be the trivial finite étale covering whose set of connected components

is equal to the set of connected components of W ′
σ. Then because of the compatibility

of the W ′
σ → Wσ with respect to restriction, it follows that the Cσ → σ

⋂
Int(σP ) glue

together to form a finite étale covering C → Int(σP ) of the topological space Int(σP ). On
the other hand, since σP is a convex cone, it is clear that Int(σP ) is simply connected.
Thus, the covering C → Int(σP ) splits. Since the covering Ŷ ′ → Ŷ is defined “by the same
combinatorics” as C → Int(σP ), it thus follows that Ŷ ′ → Ŷ splits, i.e., that π1(Ŷ ) is
trivial. Since f : Y → X is proper, it follows from the “theorem on formal functions” (see,
e.g., Theorem 11.1 of Chapter III of [11]) that π1(Y ) is trivial.

We summarize the above discussion in the following:

Theorem 2.1. There exists a proper, birational morphism of finite type f log : (Y,N) →
(X,M), where (Y,N) is log regular; Y is regular; and DY is a divisor with normal crossings
in Y . Moreover, this morphism may be chosen so that any irreducible component Z of
f−1(x)red is a smooth, proper toric variety such that the torus inside Z is given as follows:
Let DZ ⊆ Z be the closed subscheme defined locally on Z as the restriction to Z of all the
irreducible components of DY that do not contain Z. Then the torus inside Z is given by
UZ

def= Z − DZ . In particular, UZ is isomorphic to a product of Gm’s over k
def= k(x) (the

residue field of x ∈ X). Finally, the fundamental group π1(Y ) is trivial.

In this remainder of this §, we would like to analyze the structure of f log : (Y,N) →
(X,M) at the generic points of DY in greater detail. Let pY ∈ Y be a generic point of DY

that maps to x ∈ X. Then pY defines a “valuation”

v : P → N
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on P by letting v(a) (for a ∈ P ) be the order at pY of expN (a). Let k(pY ) be the residue
field of pY . Thus, k(pY ) is a finitely generated field extension of k

def= k(x) which is
generated (as a field extension of k) by the images of expN (a− b) in k(pY ), where a, b ∈ P
range over all pairs of elements such that v(a) = v(b). Now suppose that the height htX(x)
of x (as point of X) is ≥ 2. Since X is the spectrum of complete local ring, it follows that
X is universally catenary, hence that the transcendence degree of k(pY ) over k is ≥ 1 (cf.
[13], §14, 34). Thus, there exist a, b ∈ P such that v(a) = v(b), and, moreover, the image
of expN (a − b) in k(pY ) is transcendental over k. Note that since v(c) > 0 for all nonzero
c ∈ P , it follows (from the fact that v(a − b) = 0) that a − b /∈ P . Also, there does not
exist a c ∈ P such that a and b are both multiples of c. (For if this were the case, then
expN (a − b) = 1, which is not transcendental over k.) Let us write R for the submonoid
of P gp generated by P and a− b �= 0, and R′ for the smallest saturated submonoid of P gp

containing R. Thus, R′ is a finitely generated saturated integral monoid.

Let Z
def= X[expM (a) · (expM (b))−1] (i.e., the affine scheme birational to X which is

obtained from X by adjoining the rational function in brackets). Let (Z′, Q′) be the log
scheme given as follows: Z ′ def= X ⊗Z[P ] Z[R′]; Q′ is the log structure defined by the chart
given by the natural morphism R′ → OZ′ . Thus, we have a natural morphism (Z′, Q′) →
(X,M) of saturated log schemes such that Z ′ → X factors through Z. Moreover, it is
clear that this morphism is log étale (hence log smooth). Thus, it follows (by [9], Theorem
8.2) that (Z′, Q′) is log regular. Moreover, it is immediate that the fibers of Z → X and
Z ′ → X have dimension ≤ 1, and that Z ′ → Z is finite. Let Z ′

x (respectively, Zx) be
the fiber of Z ′ → X (respectively, Z → X) over x ∈ X. Then Z ′

x → Zx is finite, and
Zx = Spec(k[t]), where t is the indeterminate over k which is the image of expN (a − b).
Let us write pZ ∈ Z for the generic point of Zx. Thus, (since X is universally catenary)
htZ(pZ) = htX(x) − 1 ≥ 1.

Now let (Y ′, N ′) denote the Zariski localization of (Y,N) at pY . Thus, we have a
natural localization morphism (Y ′, N ′) → (Y,N). Composing this morphism with f log

gives us a morphism (Y ′, N ′) → (X,M). Moreover, it is clear from the definition of P ′

that this morphism (Y ′, N ′) → (X,M) factors through (Z′, Q′). Thus, we get a morphism
Y ′ → Z ′ → Z. Let us write pY ′ ∈ Y ′ for the point induced by pY . Now I claim that the
image in Z of pY ′ is pZ ∈ Z. Indeed, since pY ′ ∈ Y ′ maps to x ∈ X, it follows that the image
in Z of pY ′ lies in Zx. On the other hand, since the image of “t” (i.e., the indeterminate
such that Zx = Spec(k[t])) in k(pY ′) = k(pY ) is, by construction, transcendental over
k, it thus follows that the image in Z of pY ′ must be the generic point of Zx, i.e., pZ .
This completes the proof of the claim. Let pZ′ ∈ Z ′ be the image in Z ′ of pY ′ . Thus,
htZ′(pZ′) = htZ(pZ) = htX(x) − 1.

Next, let us denote by Z ′
pZ′

the strict henselization of Z ′ at pZ′ . Observe that the

original clean chart P gp → Mgp defines a morphism P gp → (Q′)gp such that P gp →
((Q′)gp|Z′

p
Z′

)/logM (O×
Z′
p

Z′
) is surjective. In particular, there exists a finitely generated,

free Z-module P gp
pZ′

⊆ P gp such that the restriction

12



P gp
pZ′

→ (Q′)gp|Z′
p

Z′

of P gp → (Q′)gp|Z′
p

Z′
to P gp

pZ′
defines a clean chart for Z ′

pZ′
. Since dilations of Z ′

pZ′

with respect to this clean chart are obtained by forming the normalization of Z ′
pZ′

in the

finite, flat covering of UZ′
p

Z′
obtained by extracting roots of elements of the image of P gp

pZ′

in OUZ′
p

Z′

, and such elements may also be obtained as elements of the image under the

natural morphism OU → OUZ′
p

Z′

of elements of expM (P gp), it thus follows that: There

exists a clean chart for Z ′
pZ′

such that the interior of any dilation of Z ′
pZ′

with respect to

this clean chart is dominated by the restriction to Z ′
pZ′

of the interior of a dilation with

respect to the given clean chart P gp → Mgp of X.

We summarize the above discussion as follows:

Proposition 2.2. Let (Y,N) → (X,M) be as in Theorem 2.1. Let pY ∈ Y be a generic
point of DY that maps to x ∈ X. Let (Y ′, N ′) be the Zariski localization of (Y,N) at pY ,
and write pY ′ ∈ Y ′ for the point of Y ′ that corresponds to pY ∈ Y . Suppose that the height
of x ∈ X is ≥ 2. Then the morphism (Y ′, N ′) → (X,M) factors as a composite of two
morphisms (Y ′, N ′) → (Z′, Q′) → (X,M) such that:

(1) (Z′, Q′) is log regular;

(2) the morphisms Y ′ → Z ′ and Z ′ → X are birational; in fact, Z ′ → X
is an isomorphism over the interior UX of X;

(3) the fibers of Z ′ → X have dimension ≤ 1 (thus, in particular, any point
of Z ′ of height 1 necessarily maps to a point of height ≤ 2 in X);

(4) the image pZ′ ∈ Z ′ of pY ′ ∈ Y ′ satisfies htZ′(pZ′) = htX(x) − 1.

Moreover, if we write Z ′
pZ′

for the strict henselization of Z ′ at pZ′ , then there exists a

clean chart for Z ′
pZ′

such that the interior of any dilation of Z ′
pZ′

with respect to this clean

chart is dominated by the restriction to UZ′
p

Z′
of the interior of a dilation with respect to

the given clean chart P gp → Mgp of X.
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§3. Log Purity

In this §, we give a proof of an unpublished result due originally to K. Kato which
is a “log regular analogue” of the well-known classical purity theorem ([18], Exposé X, p.
118, Théorème 3.4) on extending étale covers over regular schemes.

Lemma 3.1. Let (X,M) be a regular log scheme. Let V → UX be a finite étale covering
of the interior UX of X which is tamely ramified over the generic points of the divisor
DX ⊆ X. Suppose that X is strictly henselian with unique closed point x ∈ X. Then there
exists a positive integer n such that if (Y ′, N ′) → (X,M) is any dilation (cf. Definition
1.5) of magnitude divisible by n, then the pull-back of the covering V → UX to UY ′ via
UY ′ → UX is trivial.

Proof. Note first that since dilations may be taken to have arbitrarily large tame ram-
ification over the generic points of DX , we may assume that V → UX is étale over the
generic points of DX . The rest of the proof will be by induction on dim(X). (Note that
any strictly henselian X is necessarily finite-dimensional.) The case dim(X) = 1 is trivial.
Now suppose that dim(X) = 2. Then the lemma follows from Corollary 1.8 (of §1 of the
present paper), together with the classical purity theorem (i.e., [18], Exposé X, p. 118,
Théorème 3.4). Now let us assume that dim(X) ≥ 3. We may thus assume that Lemma
3.1 holds for strictly henselian regular log schemes of dimension ≤ dim(X) − 1. In partic-
ular, it follows that by replacing (X,M) by a dilate of (X,M) (cf. Proposition 1.6 of §1)
and applying étale descent, we may assume that V → UX extends to a finite étale covering
over X − {x}. Moreover, by completing (X,M) at x (and using faithful flat descent), we
may assume that X is the spectrum of a complete, local, strictly henselian ring.

Let (Y,N) be as in Theorem 2.1. Let (X∗,M∗) → (X,M) be a dilation of (X,M)
of magnitude divisible by some positive integer n, to be specified below. Let (Y ∗, N∗) →
(X∗,M∗) be the blow-up of (X∗,M∗) (as in Theorem 2.1) constructed using the same
nonsingular subdivision Δ as that used to construct (Y,N) out of (X,M). Thus, we have
a commutative diagram:

(Y ∗, N∗) −→ (X∗,M∗)⏐⏐�
⏐⏐�

(Y,N) −→ (X,M)

Now I claim that for some appropriate choice of n, the morphism V → UX extends to a
finite étale covering over all the generic points pY ∗ ∈ Y ∗ of DY ∗ . Indeed, write pY ∈ Y for
the image in Y of pY ∗ . If pY maps to a point of X other than x, then the claim follows from
the fact that V → UX already extends over X −{x}. Thus, we may assume that pY maps
to x ∈ X. In particular, we are in the situation of Proposition 2.2. Let (Z′, Q′), pZ′ ∈ Z ′

be as in Proposition 2.2. Now observe that htZ′(pZ′) = htX(x)−1 = dim(X)−1, and that
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V → UX extends to a finite étale covering over all of the points of Z ′ of height 1 (since
such points map to points of X of height ≤ 2, by Proposition 2.2, (3), hence to points in
X − {x}). Thus, it follows by applying the induction hypothesis (plus étale descent, and
the statement at the end of Proposition 2.2) to Z ′

pZ′
that for some appropriate choice of

n, the morphism V → UX extends to a finite étale covering over the normalization Z∗ of
Z ′

pZ′ (i.e., the Zariski localization of Z ′ at pZ′) in UX∗ . Moreover, since Y ∗
pY ∗ is normal

and maps to Z ′
pZ′ , it follows that Y ∗

pY ∗ maps to Z∗. Thus, V → UX extends to a finite
étale covering over Y ∗

pY ∗ , as desired. Since DY has only finitely many generic points pY ,
taking the product of the various n’s that occur for each pY gives us an “n” for which the
claim stated above is valid. This completes the proof of the claim.

To simplify notation, let us replace (X,M) (respectively, (Y,N)) by (X∗,M∗) (respec-
tively, (Y ∗, N∗)). Thus, we may assume that the morphism V → UX extends to a finite
étale covering over all the generic points of DY . Since DY is a divisor with normal cross-
ings in the regular scheme Y , we may thus apply the classical purity theorem to conclude
that V → UX extends to a finite étale covering of Y . On the other hand, by Theorem 2.1,
π1(Y ) is trivial. That is to say, V → UX extends to a trivial finite étale covering of Y .
Since Y is birational to UX , it thus follows that the covering V → UX is trivial, as desired.
©

Lemma 3.2. In the situation of Lemma 3.1, one may take the integer n to be prime to
char(k), the characteristic of the residue field k of X at x.

Proof. If char(k) = 0, then there is nothing to prove, so let us assume that char(k) >

0. Let p
def= char(k). Fix a clean chart for (X,M), and let (Y,N) → (X,M) be a

dilation of magnitude p. Assume that the covering V → UX splits over Y . Then it
suffices to prove that in this situation, V → UX necessarily splits over X. Note that
there always exists a point p ∈ X of height one such that p ∈ p ⊆ Γ(X,OX). Let
s1, . . . , sr ∈ Γ(UX ,OX) be the images of a basis e1 . . . , er ∈ P gp (under the composite of
expM with the clean chart P gp → Mgp). Thus, the function field k(Y ) of Y is obtained

from the function field k(X) of X by adjoining the elements s
1
p

1 , . . . , s
1
p
r to k(X). Moreover,

Y is the normalization of X in k(Y ). For i = 1, . . . , r, let Pi be the saturation of P in
< P gp, 1

p · e1, . . . , 1
p · ei >⊆ 1

p · P gp. Thus, Pi is a finitely generated, saturated, integral
monoid such that P gp

i =< P gp, 1
p · e1, . . . , 1

p · ei >, and P ⊆ Pi ⊆ 1
p ·P . Let (Yi, Ni) be the

log scheme obtained from X by letting Yi
def= X ⊗Z[P ] Z[Pi], and taking the log structure

Ni to be that associated to the natural chart Pi → OYi
. One shows as in Lemma 1.4

that (Yi, Ni) is log regular. Thus, we have a chain of morphisms of regular log schemes
factorizing (Y,N) → (X,M):

(Y,N) = (Yr, Nr) → (Yr−1, Nr−1) → . . . → (Y1, N1) → (X,M)

such that each arrow in the chain is finite (over X) and flat of degree p (over UX). Note
that all the Yi’s are local, normal, and strictly henselian. Thus, since V → UX is tamely
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ramified over the generic points of DX , it follows that the problem is as follows: Without
loss of generality, we may assume that V → UX is connected and Galois. Then there is a
minimal field KM between the function fields k(X), k(Y ) of X and Y such that V → UX

splits over KM . Moreover, KM is unramified over p. Then we would like to show that
KM = k(X).

Thus, by localizing at p and considering each of the morphisms (Yi+1, Ni+1) →
(Yi, Ni), we see that we are reduced to proving the following assertion:

(*) Let A be a discrete valuation ring with residue characteristic p. Let
K be the quotient field of A. Let L be an extension of K of degree p
such that the normalization B of A in L is a semilocal Dedekind domain
which is obtained from A by adjoining pth roots of elements of A. Then
if K ′ ⊆ L is a finite extension of K which is unramified over A, then it
follows that K ′ = K.

Let us prove (*): First of all, since [L : K] = p, if K ′ �= K, it follows that L = K ′. But
this implies that B is unramified over A. Since B is generated over A by pth roots of
elements of A, it follows that the resulting residue field extensions are inseparable. But
since they are also separable (as B is étale over A), it thus follows that they are trivial.
Let Â (respectively, B̂) be the completion of A (respectively, B). Thus, B̂ is a direct
product of p copies of Â. Relative to this description of B̂, let b = (a1, . . . , ap) ∈ B̂ (where
a1, . . . , ap ∈ Â) be such that bp ∈ Â. Then it follows that for all i, j = 1, . . . , p, we have
ap

i = ap
j . Thus, a1, . . . , ap all have the same image in the residue field of Â. On the other

hand, since B̂ is generated over Â by such b, it follows that any element (c1, . . . , cp) ∈ B̂

(where c1, . . . , cp ∈ Â) satisfies the condition that the ci all have the same image in the
residue field of Â. But this is absurd. This completes the proof of (*), and hence of the
lemma. ©

The following is an unpublished result of K. Kato:

Theorem 3.3. (Log Purity Theorem) Let (X,M) be a regular log scheme. Let
UY → UX be a finite étale covering of the interior UX of X which is tamely ramified over
the generic points of DX → X. Let Y be the normalization of X in UY . Then the pair
(Y,UY ) is toric (cf. Definition 1.2), hence defines a regular log scheme (Y,N). Moreover,
UY → UX extends uniquely to a log étale morphism (Y,N) → (X,M).

Proof. Clearly, one may assume that X is strictly henselian. Thus, by Lemmas 3.1 and
3.2, it follows that there exists an integer n which is invertible on X such that for some
dilation (Z,L) → (X,M) of magnitude n, UY → UX splits over UZ . Let P gp → Mgp be
the clean chart (cf. Definition 1.3) used to define this dilation. Let us assume (without
loss of generality) that UY is connected. Then the function field k(Y ) of UY lies between
the function fields k(X) (of X) and k(Z) (of Z). Moreover, since the extension k(Z)/k(X)
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is abelian with Galois group equal to ( 1
n · P gp)/P gp (tensored with the group of nth roots

of unity), it follows that the intermediate field k(Y ) corresponds to some submodule P gp
Y

of 1
n · P gp that contains P gp. Let us write PY for the smallest saturated submonoid of

P gp
Y containing P . Thus, we have P ⊆ PY ⊆ 1

n · P ; P gp
Y is the group associated to

PY ; and PY is a finitely generated integral, saturated monoid. Moreover, if we equip
Y ′ def= X ×Z[P ] Z[PY ] with the log structure N ′ associated to the natural chart defined by
PY , one sees immediately (cf. the proof of Lemma 1.4) that (Y ′, N ′) is log regular, and
that the natural morphism (Y ′, N ′) → (X,M) is log étale. Moreover, since UY ′ may be
identified with UY , and Y ′ is necessarily normal, it follows that Y ′ may be identified with
Y , and that (Y,UY ) = (Y ′, UY ′) is toric. This completes the proof of Theorem 3.3. ©

§4. Families of Stable Curves

Let S be a noetherian scheme. Let f : X → S be a morphism of finite type, and
DM ⊆ X a closed subscheme.

Definition 4.1. We shall call (f : X → S,DM ) locally stable if

(1) f is flat;

(2) the geometric fibers of f are reduced, connected, one-dimensional, and
have at most nodes as singularities;

(3) f is smooth at the points of DM , and DM is a union of the images of
disjoint sections s1, . . . , sr : S → X.

We shall call DM the divisor of marked points. When DM = ∅, we shall simply say that f
is locally stable.

Note that if (f,DM ) is locally stable, then f is locally stable. It is easy to check that if f is
locally stable, then it is a local complete intersection, and in particular, Gorenstein. Thus,
its dualizing sheaf ([12]) forms a natural line bundle ωX/S on X. In general, if (f,DM ) is
locally stable, then DM ⊆ X forms an S-flat divisor in X; thus, one may consider the line
bundle ωX/S(DM ) on X.

We remark that the local structure of locally stable morphisms is well-known (cf. [3]).
Indeed, suppose that S = Spec(A), where A is a complete local ring with separably closed
residue field. Suppose further that (f : X → S,DM ) is locally stable, and that x ∈ X

is a closed point of X lying over the closed point s ∈ S of S, and write B
def= ÔX,x (the

completed local ring of X at x). Then there are three possibilities for the local structure
of (X → S,DM ):
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(1) f is smooth at x and x /∈ DM : Then B is A-isomorphic to A[[t]] (where
t is an indeterminate).

(2) f is smooth at x and x ∈ DM : Then B is A-isomorphic to A[[t]] (where
t is an indeterminate) and DM = V (t) (i.e., DM is the closed subscheme
defined by t).

(3) f is not smooth at x: Then B is A-isomorphic to A[[s, t]]/(st − α),
where s and t are indeterminates and α ∈ mA (the maximal ideal of A).

In fact, for an arbitrary locally stable (f : X → S,DM ), functions such as “s” and “t”
can be found after étale localization on X and S, i.e., one need not go all the way to the
completions of X and S at the points in question.

Lemma 4.2. Suppose that (S,US) is a toric pair (Definition 1.2) – i.e., US is the
interior of S. Let (f : X → S,DM ) be locally stable, such that f is smooth over US ⊆ S.
Then if UX

def= f−1(US)
⋂

(X − DM ) ⊆ X (thus, in general, UX �= X − DM ), then
(X,UX) is a toric pair. In particular, X is normal.

Proof. We begin by proving that X is normal. First, we observe that (by the above
discussion of the local structure of f) f is a local complete intersection morphism. Thus,
to check that X is normal, it suffices to check that X is regular at all of its height one
primes (i.e., points). Since f is flat, such primes map to primes of height ≤ 1 of S. Since
S is normal, such primes of S will be regular. Moreover, since f is smooth over US , hence
over all generic points of S, it follows (by the above discussion of the local structure of f)
that it suffices to check the following: If A is a field or a complete discrete valuation ring,
then A[[t]] and A[[s, t]]/(s · t − α) (where s and t are indeterminates and 0 �= α ∈ mA)
are regular at primes of height one. But this is clear. This completes the proof that X is
normal.

Now let us consider the monoid

M
def= OX

⋂
i∗O×

UX
⊆ i∗OUX

(where i : UX ↪→ X is the natural inclusion). It follows easily from the above discussion
of the local structure of f that M defines a fine log structure on X. Indeed, in case (1)
above, this log structure is simply the pull-back to X of the log structure on S. In case
(2) above, this log structure is the result of adjoining (to the pull-back to X of the log
structure on S) a single copy of N, corresponding to some defining equation (i.e., “t” in the
above discussion) of the divisor DM . In case (3) above, this log structure is the result of
adjoining (to the pull-back to X of the log structure on S) two copies of N, corresponding
(in the notation of the above discussion) to “s” and “t,” together with a single relation,
corresponding to the equation “st − α.” Let us denote the resulting log scheme by X log.
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Since X is normal, it follows immediately (from the above definition of the monoid M)
that M is saturated.

Next, let us observe that we have a log morphism

X log → Slog

(of saturated fine log schemes). Moreover, it follows easily from the local descriptions of
the preceding paragraph that this morphism is log smooth. Thus, we conclude (by [Kato2],
Theorem 8.2) that X log is log regular, as desired. ©

Definition 4.3. We shall say that (f,DM ) is stable or a stable curve if (f,DM ) is locally
stable, f is proper, and ωX/S(DM ) is relatively ample over S.

Suppose that (f,DM ) is stable. Then note that f∗ωX/S forms a vector bundle on S.
Naturally, the rank of this vector bundle is locally constant. When it is constant, we shall
refer to this rank as the genus g of (f,DM ). The degree of the divisor DM over S is also
locally constant on S. When it is constant, we shall refer to this degree as the number of
marked points r of (f,DM ). One checks easily that the above definition of a stable curve is
equivalent to that given in [3] (when DM = ∅) or, more generally, a pointed stable curve,
as in [10] (except that in the above definition we did not fix the genus or the number
of marked points, and we did not assume that we were given an ordering of the marked
points). In particular, as one knows from [3] and [10], there is a natural moduli stack

Mg,r → Spec(Z)

of r-pointed stable curves of genus g over Z. Moreover, it follows from the condition that
ωX/S(D) be relatively ample that

2g − 2 + r ≥ 1

Now let U be an S-scheme of finite type.

Definition 4.4. We shall call U → S a hyperbolic curve if there exists a surjective étale
morphism T → S, together with a stable curve (Y → T,D) such that: (i) Y → T is
smooth; and (ii) UT

def= U ×S T is T -isomorphic to Y − D.

In this paper, the prefix “poly-” will be used to mean “successive extensions or families
of.” Thus, we have the following generalizations of “stable curves” and “hyperbolic curves”:
Let f : X → S be a morphism of finite type, and D ⊆ X a closed subscheme.
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Definition 4.5. We shall say that (f : X → S,D) is polystable or a stable polycurve if
the following data exist: a factorization

X = X0
f0−→ X1

f1−→ X2 . . . Xi
fi−→ Xi+1 . . . Xn

fn−→ Xn+1 = S

together with a decomposition

D =
n+1⋃
i=0

φ−1
i (Di)

(where Di ⊆ Xi is a closed subscheme; φ0 : X → X is the identity; and, for each i =
1, . . . , n + 1, we let φi

def= fi−1 ◦ fi−2 ◦ . . . ◦ f1 ◦ f0 : X = X0 → Xi) of D into a (schematic)
union of closed subschemes, satisfying the following properties:

(1) For each i = 0, . . . , n, the pair (fi : Xi → Xi+1,Di) is a stable curve.
Moreover, S is normal in a neighborhood of Dn+1, and Dn+1 is a reduced
divisor in S.

(2) Let Un+1
def= Xn+1 − Dn+1 ⊆ Xn+1 = S. For i = 0, . . . , n, if Ui+1 ⊆

Xi+1 is defined, then let Ui
def= f−1

i+1(Ui+1)
⋂

(Xi − Di) ⊆ Xi. Then
we assume that (for each i = 0, . . . , n) fi is smooth over Ui+1 (for i =
0, . . . , n).

We shall refer to UX
def= X − D = U0 ⊆ X0 = X as the interior of X.

In particular, it follows from Lemma 4.2 if (S,Un+1) is a toric pair, and (f,D) is polystable,
then (X,U0) it also a toric pair. In this situation, we shall say “(f,D) is polystable over
(S,Un+1),” or that “(X,U0) → (S,Un+1) is polystable.” If (X,MX) and (S,MS) are
the log schemes associated to (X,U0) and (S,Un+1), respectively, then we shall say that
“(X,MX) → (S,MS) is (log) polystable.”

Now let U be an S-scheme of finite type.

Definition 4.6. We shall say that f : U → S is polyhyperbolic or a hyperbolic polycurve
if the following data exist: a factorization

U = U0
f0−→ U1

f1−→ U2 . . . Ui
fi−→ Ui+1 . . . Un

fn−→ Un+1 = S
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such that each fi (for i = 0, . . . , n) is a hyperbolic curve.

Remark. Some people are in the habit of referring to hyperbolic polycurves as “Artin
neighborhoods.” In fact, strictly speaking, however, these two notions are not equivalent:
Indeed, in the definition of an Artin neighborhood, the morphisms fi (of Definition 4.6)
are required to be affine. On the other hand, in the definition of an Artin neighborhood,
the genus g and number of marked points r need not satisfy the inequality 2g − 2 + r ≥ 1.
Thus, neither of these two notions is stronger than the other.

§5. Functoriality of the Locus of Indeterminacy

Let A be a noetherian ring. Let Z be an integral, projective A-scheme of finite type.
Thus, we assume that Z admits a closed immersion Z ↪→ PN

A into some projective space
over A. In particular, there exists a very ample line bundle L on Z.

Let X and Y be normal, connected, separated noetherian schemes. Let

α : Y → X

be a finite morphism. Suppose that we are given also given a morphism

fU : U → Z

defined on some open subscheme U ⊆ X such that X−U has codimension ≥ 2 in X. Since
Z is separated, it follows that any extension of fU to an open subset U ′ ⊆ X that contains
U is unique. Thus, there exists a maximal open subscheme U ⊆ X to which fU extends.

Definition 5.1. We shall call U the locus of determinacy for fU , and we shall call its
complement X − U (a closed subset of X) the locus of indeterminacy for fU .

Let V
def= α−1(U) ⊆ Y . Let us suppose that Y − V has codimension ≥ 2 in Y . Thus,

we can define V ⊆ Y , i.e., the locus of determinacy for α ◦ fU . Then it is natural to ask
what the relationship is between U and V . On the one hand, it follows tautologically from
the definitions that

f−1(U) ⊆ V

The reverse inclusion is more subtle. In order to analyze the reverse inclusion, let us
consider the line bundle LU

def= f∗
UL. Note that since X is normal and X − U has codi-

mension ≥ 2 in X, it follows that any extension of LU to an open subset of X containing
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U is unique. Note further that it is clear (from the fact that fU extends to a morphism
fU : U → Z) that LU extends to a line bundle LU on U .

Lemma 5.2. Suppose that LU extends to a line bundle LX on X. Then it follows that
V = α−1(U).

Proof. Note that since Z is projective over A, it follows that Γ(Z,L) is a finitely generated
A-module. Let s1, . . . , sN ∈ Γ(Z,L) be a set of generating sections of Γ(Z,L). Note that
each si may be pulled back to a section si|U ∈ Γ(U,LU ) which extends uniquely (since X
is normal) to a section si|X ∈ Γ(X,LX). Now I claim that:

(*) The closed subset FX
def= X − U ⊆ X coincides with the com-

mon zero locus NX (regarded as a closed subset of X) of the sections
s1|X , . . . , sN |X of LX over X.

Indeed, since s1, . . . , sN have no common zeroes on Z, one concludes immediately that
s1|X , . . . , sN |X have no common zeroes on U , so NX ⊆ FX . On the other hand, over
the open subscheme U ′ def= X − NX ⊆ X, since s1|U ′ , . . . , sN |U ′ have no common zeroes
on U ′, they define a morphism U ′ → PN

A whose image is contained in Z ↪→ PN
A (where

the inclusion “↪→” is that defined by s1, . . . , sN ) and whose restriction to U is fU . Thus,
U ′ ⊆ U , so FX ⊆ NX . Thus, FX = NX . This completes the proof of the claim.

Now let FY
def= Y − V ⊆ Y (a closed subset of Y ). Note that LV extends (uniquely)

to a line bundle LY = α∗LX on Y . Thus, we have sections s1|Y , . . . , sN |Y ∈ Γ(Y,LY ).
Let NY be the common zero locus NY (regarded as a closed subset of Y ) of the sections
s1|Y , . . . , sN |Y of LY over Y . Then by the same argument as that given for (*) above,
we have that FY = NY . On the other hand, since si|Y = α∗(si|X) (for i = 1, . . . , N), it
is clear that NY = α−1(NX) (as closed subsets). Thus, we obtain that FY = α−1(FX),
hence that V = α−1(U), as desired. ©

Corollary 5.3. Suppose that α : Y → X is dominant, and V = Y . Then U = X.

Proof. Since α is finite and dominant, and X is integral, it follows that α is surjective.
Since fU extends to a morphism Y → Z, it follows that LV extends to a line bundle LY

on Y . Thus, by taking the norm of LY , we obtain a line bundle on X which extends some
tensor power of LU . In particular, by replacing the original very ample L by a power of
L, we see that we can apply Lemma 5.2. Thus, U = α(α−1(U)) = α(V ) = α(Y ) = X, as
desired. ©

In fact, we shall often wish to apply Lemma 5.2 (or Corollary 5.3) when Z is not
necessarily a projective scheme over A, but instead an integral algebraic stack over A
whose associated coarse moduli space (as in [4], Chapter 1, Theorem 4.10) is a projective
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scheme over A. In fact, the main example that we have in mind is the moduli stack
M def= Mg,r → Spec(Z) (for some nonnegative integers g and r such that 2g − 2 + r ≥ 1
– cf. §1), whose associated coarse moduli space Mc

is well-known to be projective over
Z (cf. [16], Corollary 5.18). Unfortunately, we cannot apply Lemma 5.2 or Corollary 5.3
immediately in the case of a general algebraic stack Z, but in the special case of M, we
can still make use of Lemma 5.2 or Corollary 5.3 by applying Lemma 5.2/Corollary 5.3 in
tandem with Lemma 5.4 or Lemma 5.5 below.

Let l ≥ 3 be a prime number. Let M ⊆ M be the open substack parametrizing
smooth curves. Let C → M be the tautological curve over M. Let J → M be the
Jacobian of the tautological curve. Write J [l] for the kernel of the map J → J given by
multiplication by l. Thus, J [l] ⊗ Z[1l ] is étale over M⊗ Z[1l ], and may be thought of as
a local system of abelian groups isomorphic to (Z/l · Z)2g. Write M[l] → M ⊗ Z[1l ] for
the finite étale covering of “level structures,” i.e., isomorphisms of this local system with
(Z/l · Z)2g. Thus, M[l] is étale over M ⊗ Z[1l ], and tamely ramified over the divisor at
infinity of M⊗ Z[1l ] (cf., e.g., §3.22, 3.23, of [14]).

The following two lemmas are well-known (cf., e.g., Lemma 2.1 of [1]):

Lemma 5.4. Let X be a normal, connected, separated noetherian scheme with generic
point η. Let fη : η → M be a morphism that lifts to a morphism hη : η → M[l], where l

is invertible on X. Write f c
η : η → Mc

for the composite of fη with M → Mc
. Suppose

further that f c
η extends to a morphism f c : X → Mc

. Then fη extends uniquely to a
morphism f : X → M.

Proof. Note that since M = Mc
when g = 0, we may assume that g ≥ 1. Moreover, since

Mg,r → Mg,r−1 (where 2g − 2 + r − 1 ≥ 1) is projective, it follows that we may assume
that either r = 0, or g = r = 1. Thus, in the following we assume that either r = 0 or
g = r = 1.

By standard techniques (e.g., replacing X by a scheme of finite type over Z, completing
at a prime, and then enlarging the residue field), we may assume that X = Spec(R), where
R is a complete local ring with separably closed residue field. Let us denote the closed
point of X by x, and the quotient ring of R by K. Let M c be the strict henselization of
Mc

at f c(x); let M
def= M×Mc M c. Thus, there is a strict henselian regular local ring Q,

equipped with the action of a finite group G, such that M is the quotient of M ′ def= Spec(Q)
by G “in the sense of stacks,” and M c = Spec(QG) (cf. [4], Chapter 1, Theorem 4.10).
Here, G is the automorphism group of the curve f c(x) (cf. [4], Chapter 1, Theorem 4.10).
Moreover, f c factors through M c. Thus, since M = M×Mc M c, it follows that fη factors
through M . Denote the resulting morphism by fM

η : η → M . Now I claim that:

(*) The morphism fM
η : η → M factors through M ′ = Spec(Q).
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Before proving this claim, let us observe that this claim completes the proof of Lemma
5.4. Indeed, the claim states that fM

η : η → M factors through some morphism η → M ′.
Moreover, since Q is finite over QG, X is normal, and we have a morphism X → M c,
we thus conclude that the morphism η → M ′ extends to a morphism X → M ′. Thus, in
particular, fM

η : η → M extends to a morphism X → M , so fη : η → M extends to a
morphism f : X → M, as desired. The uniqueness statement follows from the fact that
M is a separated algebraic stack.

Now let us prove (*). Let C → M be the tautological curve. Write m ∈ M for the
closed point of M , and Cm for the fiber of C → M over m. Note that since l is invertible
on X, it follows that any line bundle Lm on Cm such that L⊗l

m
∼= OCm

lifts uniquely to
a line bundle L′ on C′ def= C ×M M ′ such that (L′)⊗l ∼= OC′ . It thus follows that the
“line bundles on C whose lth power is trivial” form an étale local system on M which is
étale locally isomorphic to (Z/l · Z)a, for some nonnegative integer a ≤ 2g. Let us denote
by N → M the finite étale covering parametrizing isomorphisms of this local system to
(Z/l · Z)a. Thus, N is a stack parametrizing curves equipped with line bundles satisfying
certain properties. By [2], Corollaire 5.17, and [3], Theorem 1.13, the curve plus line bundle
pairs corresponding to the closed points of N have no automorphisms. Thus, N is in fact a
scheme. More precisely, N is a finite disjoint union of spectra of strictly henselian regular
local rings. Since M ′ → M is finite étale, it thus follows that the morphism N → M
factors through M ′.

Thus, to prove (*), it suffices to prove that fM
η : η → M factors through N . But

this is a consequence of the fact that the l-torsion points of the Jacobian of the curve
Cη

def= C ×M η are all defined over η (by the existence of hη). This completes the proof of
(*), and hence of Lemma 5.4. ©

Lemma 5.5. Let X be an integral separated noetherian scheme with generic point η.
Suppose, moreover, that X has the following property:

(*) The completions of the local rings of X are normal complete inter-
sections.

Let fη : η → M be a morphism. Assume that either

(1) fη extends over all the points of X of height ≤ 2; or

(2) X is regular and fη extends over all the points of X of height ≤ 1.

Write f c
η : η → Mc

for the composite of fη with M → Mc
. Suppose further that f c

η extends
to a morphism f c : X → Mc

. Then fη extends uniquely to a morphism f : X → M.

Proof. By (*), we reduce immediately (by descent) to the case where X = Spec(R),
where R is a complete local ring with separably closed residue field. Now let us use the
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notation of the proof of Lemma 5.4. Just as in the proof of Lemma 5.4, it suffices to show
that the morphism fM

η : η → M factors through M ′ = Spec(Q). Note that M ′ → M is
a finite étale morphism. If we pull it back via fM

η , we thus get a finite étale morphism
η′ → η. Clearly, it suffices to show that η′ → η admits a section. But note that the
assumptions of the lemma imply that η′ → η extends to a finite étale covering either over
the primes of R of height ≤ 2 (under assumption (1)) or over the primes of R of height ≤ 1
(under assumption (2), in which case R is regular). In either case, by [18], Exposé X, p.
118, Théorème 3.4, it follows that η′ → η extends to a finite étale covering X ′ → X over
X = Spec(R). Since X is strictly henselian, this covering thus admits a section. Thus,
η′ → η also admits a section, as desired. ©

Remark. We would like to apply Lemma 5.5 when X has toric singularities (cf.
Definition 1.2). Observe that in this case, (since the completion (at a point) of a regular
log scheme is again a regular log scheme) X automatically satisfies the normality part of
the assumption (*) in Lemma 5.5 (cf. the discussion following Definition 1.1).

Before continuing, we make a definition which will be important in the following §’s:
Let X be a normal noetherian scheme. Let D ⊆ X be an effective Weil divisor in X, and
let U

def= X − D. Thus, U is a dense open subscheme of X. Suppose that we are given a
morphism

hU : U → M

such that hU (U) ⊆ M.

Definition 5.6. Let l be a prime number. We shall say that hU admits a level l structure
if it factors through M[l].

Note that it follows from [2], Corollaire 5.18 and Proposition 5.7 (and the fact that
Mg,r+1 → Mg,r is projective) that if hU admits a level l structure, then hU extends
(as a morphism to M) over the generic points of D.

Finally, we include one more (well-known) result concerning the locus of indeterminacy
which we will use in the following. Let X, U , Z, and A be as above. Moreover, just as
above, we assume that we are given a morphism

fU : U → Z

Assume further that X has the structure of an A-scheme, and that fU is a morphism of
A-schemes. Then we have the following result:
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Lemma 5.7. Suppose that φ : X ′ → X is a projective morphism between normal,
connected, separated noetherian schemes which is an isomorphism over U . Suppose, more-
over, that fU : U → Z extends to X ′ and that for each x ∈ X, this extension of fU maps
φ−1(x) ⊆ X ′ to a point. Then fU extends to X.

Proof. Let Γ ⊆ X ×A Z be the closure (with the reduced induced scheme structure) in
X ×A Z of the graph ΓU ⊆ U ×A Z of fU . Let Γ′ ⊆ X ′×A Z be the graph of the extension
to X ′ of fU . Let U ′ def= φ−1(U). Thus, U ′ ∼= U . Since Γ′ is the closure of the graph Γ′

U of
the composite of U ′ ∼= U with fU , and Γ′

U maps isomorphically to ΓU under the morphism
φZ : X ′ ×A Z → X ×A Z, it follows that φZ maps Γ′ into Γ. Thus, we have a morphism

β : X ′ ∼= Γ′ → Γ

together with a projection morphism π : Γ → X such that π ◦ β = φ. Let x ∈ X. Then by
assumption, φ−1(x) ⊆ X ′ maps under β to a single point of Γ ⊆ X ×A Z. In particular,
(since β is surjective) it follows that π : Γ → X is quasi-finite. Since π is also projective, it
follows that π is finite. Since π is an isomorphism over U , Γ is integral, and X is normal,
it thus follows that π is an isomorphism. Thus, fU extends to X, as desired. ©

§6. The Extension Theorem

If g and r are nonnegative integers such that 2g − 2 + r ≥ 1, let us write Mg,r →
Spec(Z) for the moduli stack of r-pointed stable curves of genus g over Z, and Mg,r ⊆ Mg,r

for the open substack parametrizing smooth curves (cf. [3], [10]). The following is the main
result of the present paper:

Theorem 6.1. (Extension Theorem) Let (X,M) be a regular log scheme. Let
UX ⊆ X be the interior of X, i.e., the open subscheme where the log structure M is trivial.
Write M def= Mg,r, M def= Mg,r. Let Mc

be the coarse moduli space associated to Mg,r.
Suppose that we are given a morphism

hUX
: UX → M

which satisfies hUX
(UX) ⊆ M. Let us denote by hc

UX
: UX → Mc

the composite of hUX

with M → Mc
. Then:

(1) If hUX
extends over the generic points of DX , then: (i) hc

UX
extends

to X; (ii) there exists a surjective, quasi-finite, log étale morphism
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(Y,N) → (X,M) (where (Y,N) is log regular) such that hUX
extends

over Y .

(2) If hUX
extends over all points of X of height ≤ 2, and X is a local

complete intersection, then hUX
extends to X.

(3) If for some l ≥ 3 which is invertible on X, hUX
admits a level l structure

(cf. Definition 5.6), then hUX
extends to X.

Proof. By Lemma 5.5 (1), it follows that assertion (1) implies assertion (2). Moreover,
part (i) of assertion (1) follows immediately from part (ii) of assertion (1); Corollary 5.3;
and the technique of étale descent. (Note: Up to étale localization on X, one may always
assume that the morphism Y → X of part (ii) is finite!) Next, let us observe (relative
to the proof of part (ii) of assertion (1)) that by the log purity theorem (Theorem 3.3),
it follows that after replacing (X,M) by some (Y,N) as in part (ii) of assertion (1), one
may always assume that hUX

: UX → M admits a level l structure (cf. Definition 5.6) for
some prime l ≥ 3. Thus, in order to complete the proof Theorem 6.1, it suffices to prove
assertion (3).

In order to prove assertion (3), we may assume (by using faithfully flat descent)
that X is the spectrum of a complete, local, strictly henselian ring (with closed point x).
Thus, in particular, X is finite-dimensional. The rest of the proof will be by induction on
dim(X). The case dim(X) = 1 is trivial. The case dim(X) = 2 follows from Corollaries
1.8, 5.3 (of the present paper), together with Theorem 5.1 of [7]. Now let us assume that
dim(X) ≥ 3. We may thus assume that Theorem 6.1 holds for regular log schemes of
dimension ≤ dim(X) − 1. In particular, we may assume that hUX

extends over X − {x}.
Let (Y,N) → (X,M) be a blow-up morphism as in Theorem 2.1. Note that the fact

that hUX
admits a level l structure (for some prime l ≥ 3) implies that hUX

extends over
all the generic points of DY (cf. the discussion following Definition 5.6). Since DY is a
divisor with normal crossings in the regular scheme Y , we may thus apply Theorem 5.1 of
[7] to conclude that hUX

extends over Y . Let us denote this extension by hY : Y → M.

Let Z ⊆ Y be as in Theorem 2.1. Thus, UZ ⊆ Z is a product of Gm’s over k
def= k(x).

Now I claim that (in the language of [7], §3) the topological type of the curve over UZ

defined by hY |UZ
is locally constant over UZ . But this follows by the same argument as

that used in [7] (cf. especially §5.2, the third paragraph of p. 554; §3): Namely, let u ∈ UZ .
Then any irreducible component of DY at u necessarily contains the generic point of UZ

(cf. Theorem 2.1). But one knows in general ([7], §3) that the topological type of the curve
defined by hY is locally constant on each of the strata defined by the various intersections
of the irreducible components of DY (in an étale neighborhood of u). Thus, it follows that
the topological type of the curve in question is locally constant over UZ . This completes
the proof of the claim.

27



On the other hand, since UZ is a product of Gm’s over k, it follows from Lemma 4.1
of [7] that hc

Y |UZ
is constant. Thus, hc

Y maps Z to a point. Now since X is normal, the
fibers of Y → X are connected. Thus, it follows that hc

Y maps f−1(x)red to a point. Thus,
by Lemma 5.7, it follows that hc

Y factors through X, i.e., hc
UX

extends to a morphism
hc

X : X → Mc
. Finally, by Lemma 5.4, we conclude that hY factors through X, i.e., that

hUX
extends to a morphism hX : X → M, as desired. ©

Corollary 6.2. Let S be a noetherian scheme; and (f : X → S,D) be polystable (cf.
Definition 4.5). Suppose that (X ′, U ′) is a toric pair, and that X ′ has the structure of an
S-scheme. Let

hU ′ : U ′ → X

be a morphism of S-schemes such that hU ′(U ′) ⊆ UX
def= X−D. Then hU ′ extends uniquely

to a morphism hX′ : X ′ → X.

Proof. Suppose that the composite hU ′ [i + 1] : U ′ → Xi+1 of hU ′ with φi+1 : X → Xi+1

extends to a morphism hX′ [i+1] : X ′ → Xi+1 (for some i = 0, . . . , n). (For instance, in the
case i = n, we know that hU ′ [n + 1] extends to a morphism hX′ [n + 1] : X ′ → Xn+1 = S
– indeed, one can simply take the structure morphism X ′ → S for hX′ [n + 1].) Then we
would like to show that hU ′ [i] extends to a morphism hX′ [i] : X ′ → Xi. If we can show
the existence of hX′ [i] whenever hX′ [i + 1] is assumed to exist, then reverse induction on
i implies the conclusion of Corollary 6.2. Thus, it suffices to show (for i = 0, . . . , n) that

(*) If the extension hX′ [i + 1] : X ′ → Xi+1 exists, then the extension
hX′ [i] : X ′ → Xi exists.

Let us show (*). First, consider the stable curve (fi : Xi → Xi+1,Di). This curve defines a
classifying morphism α : Xi+1 → M = Mg,r (for some g, r). Moreover, Xi → Xi+1 may be
identified with the pull-back by α of the tautological curve C → M, i.e., Xi = C×M,αXi+1.
Let θ : U ′ → C be the morphism obtained by composing U ′ → Xi with the projection
Xi → C. Next, observe that C may be identified with Mg,r+1. Thus, Theorem 6.1 implies
that θc : U ′ → Cc

extends to X ′. But clearly

Xi = C ×M Xi+1 → Cc ×Mc Xi+1

is a quasi-finite (hence finite) surjective morphism of projective schemes over Xi+1. More-
over, we have just seen that U ′ → Cc×Mc Xi+1 extends to X ′. Thus, Corollary 5.3 implies
that U ′ → Xi extends to X ′, as desired. ©
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§7. Application to Hyperbolic Polycurves

Let (S,US) be a toric pair. Let

(X,UX) → (S,US)

be polystable (cf. Definition 4.5). Then it follows immediately from the definitions (espe-
cially property (2) of Definition 4.5) that the morphism between the interiors

h : UX → US

is a hyperbolic polycurve (cf. Definition 4.6).

Definition 7.1. We shall refer to a polyhyperbolic morphism h : UX → US that arises
in the above fashion from a polystable (X,UX) → (S,US) as compactifiable. Moreover, if
h is compactifiable, we shall refer to (X,UX) → (S,US) as a compactification of h.

Now let (S,US) be a toric pair; and let

h : UX → US

be an arbitrary polyhyperbolic morphism. That is to say, we do not assume that h is
compactifiable.

In this §, we would like to show that under certain conditions, h neces-
sarily admits a compactification which is “natural” in the sense that it
is functorial with respect to certain types of morphisms.

Definition 7.2. Let UX → US be a hyperbolic curve. We shall say that it is split if
(cf. Definition 4.4) there exists a stable curve (Y → US ,DM ) such that: (i) Y → US is
smooth; (ii) UX is US-isomorphic to Y − DM .

Let l be a prime number ≥ 3. We shall say that UX → US is l-saturated if it is split,
and the corresponding classifying morphism US → Mg,r admits a level l structure (cf.
Definition 5.6).

We shall say that UX → US is saturated if there exist (not necessarily distinct) prime
numbers l1, l2 ≥ 3 such that: (i) the open subschemes (US)1

def= US [ 1
l1

] and (US)2
def= US [ 1

l2
]

cover US ; (ii) for i = 1, 2, (UX)i
def= UX |(US)i

→ (US)i is li-saturated.
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Definition 7.3. Let UX → US be polyhyperbolic. We shall say that it is split (respec-
tively, l-saturated; saturated) if each of the Ui → Ui+1 (for i = 0, . . . , n) of Definition 4.6 is
split (respectively, l-saturated; saturated).

Corollary 7.4. (Compactification Theorem) Let (S,MS) be a regular log scheme.
Let US ⊆ S be the interior of S. Let UX → US be polyhyperbolic and saturated (cf.
Definitions 4.6, 7.3). Then UX → US may be compactified to a (log) polystable (X,MX) →
(S,MS) (cf. Definition 4.5, 7.1).

Moreover, this compactification is natural in the following sense: Suppose that (S′,MS′)
is a regular log scheme, and let (X,MX) → (S,MS), and (X ′,MX′) → (S′,MS′) be log
polystable with associated hyperbolic polycurves UX → US and UX′ → US′ , respectively.
Suppose, moreover, that we are given a commutative diagram:

UX −→ US ⊆ S⏐⏐�
⏐⏐�

⏐⏐�
UX′ −→ US′ ⊆ S′

Then the square on the left “compactifies” uniquely to a commutative diagram:

(X,MX) −→ (S,MS)⏐⏐�
⏐⏐�

(X ′,MX′) −→ (S′,MS′)

In particular, it makes sense to speak of “the” compactification of UX → US.

Proof. First, we prove the existence of a polystable (X,UX) → (S,US). We use induction
on the “n” appearing in Definition 4.6. Thus, we assume that U1 → US has been compact-
ified to some (X1, U1) → (S,US). Moreover, we have a (split) saturated hyperbolic curve
U0 → U1. This curve gives us a classifying morphism

U1 → M ⊆ M def= Mg,r

(for some g, r). Because of the naturality assertion in Theorem 7.4, it suffices to construct
(X → S,D) locally over Spec(Z). Thus, the saturatedness assumption implies that we may
assume that U1 → M admits a level l structure (for some prime l ≥ 3) – cf. Definition 5.6.
Since (X1, U1) is toric (by Lemma 4.2), applying Theorem 6.1 implies that this morphism
extends to a morphism X1 → M. Pulling back the universal curve and divisor of marked
points over M, we thus obtain a compactification (X,UX) → (S,US), as desired.
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Now we consider the naturality assertion. The point here is that (X ′, UX′) → (S′, US′)
is polystable, while (X,UX) is toric. Moreover, X has an S′-scheme structure such that all
the morphisms involved are S′-morphisms. Thus, we may apply Corollary 6.2 to conclude
that we get a morphism from X → S to X ′ → S′, as desired. This completes the proof of
Theorem 7.4. ©

We conclude this paper with some remarks concerning Corollary 7.4.

Remark 1. Concerning coverings of hyperbolic polycurves: In characteristic 0, it is easy
to see that any connected, finite, étale cover of a hyperbolic polycurve is again a hyperbolic
polycurve. Thus, given an arbitrary polyhyperbolic U → T , there exists a polyhyperbolic
U ′ → T ′ such that U ′ (respectively, T ′) is finite étale over U (respectively, T ) and such
that U ′ → T ′ is (split and) saturated. In characteristic p or mixed characteristic, however,
finite étale covers of hyperbolic polycurves need not be hyperbolic polycurves. Thus, when
the base is not of characteristic 0, it is often a nontrivial task to construct hyperbolic
polycurves satisfying the hypotheses of Theorem 5.4.

Remark 2. Concerning the “Saturatedness” Hypothesis in Corollary 7.4: This hypoth-
esis may strike the reader as being unnecessarily strong since there certainly exist many
compactifiable hyperbolic polycurves which are not saturated. On the other hand, from
another point of view, this hypothesis is, in fact, rather natural, and not so restrictive at all:
Indeed, if a hyperbolic polycurve UX → US admits a compactification (X,UX) → (S,US),
then the l-torsion points (for l invertible on S) of each hyperbolic curve in a sequence as in
Definition 4.6 are tamely ramified over the base (i.e., the next higher numbered curve in a
sequence as in Definition 4.6). Thus, the compactification (X,UX) → (S,US) necessarily
fits into a commutative (in general, non-cartesian) diagram:

(X ′, UX′) −→ (S′, US′)⏐⏐�
⏐⏐�

(X,UX) −→ (S,US)

where the vertical arrows are finite, Galois, and log étale, and UX′ → US′ is a saturated
hyperbolic polycurve (i.e., is of the sort that is treated in the existence part of Corollary
7.4). In fact, if the Galois groups of the vertical arrows are GX , GS , respectively, then (by
the functoriality part of Corollary 7.4) GX and GS act on the above commutative diagram.
Thus, if we form the quotient of the above commutative diagram by these actions in the
sense of stacks, we obtain a commutative diagram

(Y,UY ) −→ (T,UT )⏐⏐�
⏐⏐�

(X,UX) −→ (S,US)
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whose vertical arrows are now proper, quasi-finite, log étale, and birational (even isomor-
phisms over UX and US!). (Note that since, in general, Y and T are algebraic stacks,
“proper + quasi-finite �= finite.”) Thus, in summary, although there exist compactifiable
hyperbolic polycurves not covered by the existence part of Corollary 7.4, modulo the op-
eration of putting an appropriate stack structure on the compactification X → S at the
boundaries X − UX , S − US, every compactifiable hyperbolic polycurve is, in fact, covered
by Corollary 7.4.

Remark 3. Relationship to de Jong’s theory of alterations: Corollary 7.4 gives another
way to think about de Jong’s work ([6]) on alterations. For instance, suppose that R is a
Dedekind domain whose quotient field K we assume (for simplicity) to be of characteristic
0. Let XK be a variety over K (i.e., a geometrically irreducible K-scheme). It is a well-
known fact in algebraic geometry that any smooth point of XK admits a neighborhood
UK ⊆ XK such that UK is an “Artin neighborhood.” In our terminology, by taking UK to
be sufficiently small, one may assume that UK is a hyperbolic polycurve over K. In fact,
if we do not specify a point of XK that we wish to have belong to UK , then it is an easy
exercise in elementary commutative algebra to show that such a UK exists. Then applying
Corollary 7.4 (cf. also Remarks 1 and 2 above), we see immediately that there exists a
proper algebraic stack (which one can think of as a “stack-alteration” of XK)

Z → Spec(R)

such that: (i) (when equipped with an appropriate log structure) Z is log regular; (ii) UK

is an open subscheme of ZK
def= Z ⊗R K.

In fact, given an arbitrary proper model X → Spec(R) of XK over R, by taking UK to
be sufficiently small, one can even assume that Z is equipped with a proper R-morphism

Z → X

(which is the identity on UK). Indeed, this is precisely the sort of “resolution of indeter-
minacy” problem that is already solved by Corollary 7.4: First of all, we may cover X by
affines {Uα}, and assume that each Uα is embedded in some affine space over R. But affine
space (which is just a product of A1’s) may be regarded as a partial compactification of a
product of P1 −{0, 1,∞}’s, which are hyperbolic curves! Thus, by taking UK ⊆ XK to be
sufficiently small – i.e., so small that it is contained in all the Uα’s, and, moreover, (relative
to the affine embedding of each Uα) maps into the open subscheme of affine space given
by a product of P1 −{0, 1,∞}’s – we obtain that the functoriality portion of Corollary 7.4
implies that we get a proper R-morphism Z → X , as desired.

In fact, by arguing as above, Corollary 7.4 can be used to give proofs of many of the
results of [6] (cf., e.g., [15] for more details).

Thus, in summary, although Corollary 7.4 appears to address only certain specific
compactification/resolution of indeterminacy problems (i.e., those concerning hyperbolic
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polycurves), in fact, because of the ubiquity of hyperbolic polycurves in algebraic geometry
– e.g., in the form of Artin neighborhoods; as the open subscheme (P1 − {0, 1,∞})N ⊆
(A1)N = AN in affine space – Corollary 7.4 can be applied to a fairly large and diverse
collection of compactification/resolution of indeterminacy problems in algebraic geometry.
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